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ABSTRACT

Compressed sensing (CS) has in recent years become a very pop-
ular way of sampling sparse signals. This sparsity is measured
with respect to some known dictionary consisting of a finite num-
ber of atoms. Most models for real world signals, however, are
parametrised by continuous parameters corresponding to a dictio-
nary with an infinite number of atoms. Examples of such parameters
are the temporal and spatial frequency. In this paper, we analyse how
CS affects the estimation performance of any unbiased estimator
when we assume such infinite dictionaries. We base our analysis on
the Cramer-Rao lower bound (CRLB) which is frequently used for
benchmarking the estimation accuracy of unbiased estimators. For
the popular sensing matrices such as the Gaussian sensing matrix,
our analysis shows that compressed sensing on average degrades the
estimation accuracy by at least the down-sample factor.

Index Terms— Compressed sensing, Cramer-Rao lower bound.

1. INTRODUCTION

For a wide range of applications such as compression, enhancement,
identification, and separation, sparse decompositions have been a
very useful tool. Mathematically speaking, a sparse decomposition
of an N -dimensional complex vector x ∈ CN can be written as the
linear model

x = Ψs+ e (1)

where Ψ ∈ CN×D is referred to as the basis or dictionary, s is
a D-dimensional S-sparse vector, and e ∈ CN is an error vector
modelling noise and model inaccuracies. By S-sparse, we mean that
s contains exactly S non-zero coefficients and D − S zeros. More-
over, we say that x is an S-sparse or a compressible signal in the
basis Ψ if e = 0 or e ≈ 0, respectively. Traditionally, the non-zero
coefficients of s are found by greedy or `1 optimisation algorithms
such as matching pursuit [1] or basis pursuit [2]. In the usual cases
where N � S, however, these methods may suffer from a large
computational overhead as they have to work directly on x. In com-
pressed sensing (CS) [3], this overhead is decreased considerably by
utilising the sparsity during the data acquisition. That is, instead of
acquiring x by sampling at the Nyquist rate, we acquire y ∈ CM

with S < M ≤ N by only collecting an amount of data close to
the sparsity level S. Thus, CS may enable a faster computation of
the parameters, data acquisition at a lower sample rate, and less de-
manding storage requirements. These properties are very important
for most signal processing algorithms, and CS has therefore become
very popular. Mathematically speaking, we model the relationship
between x and y by y = Φx where Φ ∈ CM×N is referred to as

the sensing matrix. If x is compressible, and Φ is chosen appropri-
ately, the vector s can be computed directly from y provided that the
Restricted Isometry Property (RIP) holds [3, 4]. Until recently [5],
the recovery was only shown to hold for the orthogonal or incoher-
ent dictionaries Ψ. Consequently, much attention has been directed
towards finding sensing matrices which makes M as small as pos-
sible given an incoherent dictionary [6, 7]. The dictionary Ψ in (1)
consists of D column vectors {ψd}Dd=1 which are often referred to
as atoms, and popular choices of the dictionary are the Fourier basis
and a wavelet basis. Typically, the atoms can be represented by a
parametric function f(φ), and each atom is constructed by select-
ing a specific value ψd = f(φd) for the parameter of this function.
For example, the atoms of the incoherent Fourier basis is formed
by sampling the frequency parameter φ = ω on the Fourier grid
φd = 2πd/D with D = N . For most real world signals, however,
the parameter φ is a continuous parameter corresponding to highly
coherent dictionaries with D →∞. A sparse decomposition with a
finite dictionary is therefore in direct contradiction with the physics
behind most signal models of the form

x = A(φ)α+w (2)

wherew ∈ CN is a noise vector, andA(φ) ∈ CN×S is parametrised
by φ ∈ CK−S and contains the S true atoms with the amplitudes
α ∈ CS . The scalar K is the total number of variables in φ and α.
Comparing the models in (2) and (1), we see that A(φ)α ≈ Ψs
with equality if the true atoms in A(φ) are included in Ψ. As
demonstrated in [8], we obtain an inferior compression scheme by
using the model in (1) rather than (2) when equality does not hold.
CS has been developed under the assumption that equality holds. In
other words, φ is assumed to be a discrete parameter whose possible
values are used to construct the atoms of the dictionary. When CS
is viewed in this light, we may interpret the RIP as a requirement to
the distance between adjacent values that φ may take.

In this paper, we do not assume that φ is a discrete parameter.
For various popular sensing matrices [4, 9], we instead investigate
the accuracy with which we can estimate the continuous parameters
of the model in (2) when we are giving y instead of x. For the MU-
SIC algorithm, we noted a significant loss in the estimation accuracy
in [10]. Here, however, we do not consider a specific estimation al-
gorithm, but only the best possible performance that any unbiased
estimation algorithm can obtain. We therefore base the analysis on
the Cramer-Rao lower bound (CRLB) which has previously [11, 12]
been used to assess the estimation accuracy of the non-zero elements
of s, assuming a finite dictionary. In this paper, however, we work
directly with the model in (2), corresponding to an infinite dictionary.
The paper is organised as follows: In Sec. 2, we present the CRLB
for the model in (2). The CRLB is used to benchmark the perfor-



mance of unbiased estimators, and we modify it to the situation in
which CS is used in Sec. 3. In Sec. 4, we establish a connection
between the CRLB with and without CS by deriving a lower bound
on the expected CRLB for some of the popular sensing matrices. An
illustrative simulation is presented in Sec. 5, and Sec. 6 concludes
this paper.

2. CRAMER-RAO LOWER BOUND

Consider the general problem in which we observe N random data
points x which we mathematically describe by a family of probabil-
ity density functions p(x;θ). Without loss of generality, we assume
that this model is parametrised by the real1 parameter vector θ which
we wish to estimate based on the data. In order to do this, we con-
struct an unbiased estimator θ̂ which maps the data into an estimate.
For the covariance matrix C θ̂ of any unbiased estimator, the CRLB
guarantees that C θ̂ − I−1(θ) ≥ 0 where the inequality denotes
positive semi-definitiveness. Thus, for the variance of the estimator
for the k’th parameter, we have that

var(θ̂k) = [C θ̂]kk ≥
[
I−1(θ)

]
kk

(3)

where [·]kk denotes the (k, k)’th element. The matrix I(θ) is the
Fisher information matrix (FIM), and it is given by [13]

I(θ) = E

{
∂ ln p(x;θ)

∂θ

∂ ln p(x;θ)

∂θ

T}
(4)

where (·)T denotes matrix transpose. It can be shown that if x has
a multivariate complex normal distribution whose mean and covari-
ance are parametrised by θ, i.e., x ∼ CN (µ(θ),C(θ)), then the
(k, l)’th element of the FIM is given by [13]

[I(θ)]kl = 2Re
[
∂µH(θ)

∂θk
C−1(θ)

∂µ(θ)

∂θl

]
+ tr

[
C−1(θ)

∂C(θ)

∂θk
C−1(θ)

∂C(θ)

∂θl

]
. (5)

where (·)H denotes complex transposition, tr(·) denotes matrix
trace, and Re[·] takes the real part of a complex number. For the
model in (2) with w ∼ CN (0, σ2

wIN ), the (K + 1)-dimensional
parameter vector is θ ,

[
φT αT σ2

w

]T , and we have that

x ∼ CN (A(φ)α, σ2
wIN ) (6)

where IN is the N -dimensional identity matrix. Using (5) and (6),
the FIM is given by

I(θ) =
[
2σ−2

w Re(QHQ) 0
0T Nσ−4

w

]
(7)

where we have defined

qk ,
∂µ(θ)

∂θk
for k = 1, 2, . . . ,K (8)

Q ,
[
q1 q2 · · · qK

]
. (9)

1If the model is parametrised by complex parameters ξ = ξr + jξi, say,
then θ is defined as θ ,

[
ξTr ξTi

]T .

3. THE EXPECTED PROJECTION MATRIX

As mentioned in the introduction, we observe y instead of x in com-
pressed sensing. Incorporating this into (2) yields

y = Φx = ΦA(φ)α+ Φw (10)

from which we see that

y|Φ ∼ CN (ΦA(φ)α, σ2
wΦΦH) . (11)

In the following sections, we investigate how the sensing matrix af-
fects the CRLB derived in Sec. 2.

3.1. Fisher Information Matrix in Compressed Sensing

For k, l ≤ K, we obtain from (5) and (11) that

[ICS(θ)]kl = 2σ−2
w Re

[
qHk ΦH(ΦΦH)−1Φql

]
= 2σ−2

w Re
[
qHk Πql

]
(12)

where we have defined Π , ΦH(ΦΦH)−1Φ which is an N × N
orthogonal projection matrix of rank M . For k = l = K + 1, we
can rewrite (5) as

[ICS(θ)]kl = tr
{
σ−2
w (ΦΦH)−1ΦΦHσ−2

w (ΦΦH)−1ΦΦH
}

= tr
{
σ−4
w IM

}
=Mσ−4

w . (13)

Thus, the FIM is given by

ICS(θ) =

[
2σ−2

w Re(QHΠQ) 0
0T Mσ−4

w

]
. (14)

Compared against the FIM in (7), we see that ICS(θ) differs in terms
of the scaling factor of the (K + 1,K + 1)’th element and the in-
clusion of the projection matrix Π inside the inner matrix product
QHQ. The interpretation of the latter is straightforward; we project
the columns ofQ onto the subspace spanned by ΦH . Therefore, the
diagonal elements of ICS(θ) decrease compared against the corre-
sponding elements of I(θ) unlessQ is spanned by ΦH .

3.2. Typical Sensing Matrices

As alluded to in the introduction, the choice of sensing matrix Φ is
vital in CS; we wish to find a sensing matrix that obeys the RIP for as
few measurements M as possible. Perhaps surprisingly, stochastic
sensing matrices have been shown to be nearly optimal for almost
any choice of basis Ψ [14]. Some of the most popular choices are
listed below [4].

1. Select the entries of Φ as i.i.d. samples from a normal distri-
bution with variance 1/M .

2. Sample N N -dimensional i.i.d. vectors from a normal distri-
bution with unit variance. Find an orthonormal basis of these
N random vectors and select the rows of Φ as M random
rows from this orthonormal basis.

3. Sample N M -dimensional i.i.d. vectors uniformly at random
from the unit sphere.

4. Select the entries of Φ as i.i.d. samples from a symmetric
Bernoulli distribution with outcomes ±1/M .



Once the sensing matrix has been selected, the FIM is easy to calcu-
late. Since the sensing matrix is often selected at random, however,
it is not particularly useful to say something about a specific reali-
sation of the sensing matrix. Therefore, the next logical step in our
analysis is to investigate the statistics of the inverse FIM when the
sensing matrix is selected at random from some matrix variate dis-
tribution. Unfortunately, this is in general a very hard problem, and
we therefore consider the simpler task of investigating the expected
FIM for the various sensing matrices. We use this to derive a lower
bound on the expected inverse FIM in Sec. 4.

Since the unknown parameters θ are assumed to be deterministic
variables, it readily follows from (14) that the expected FIM is given
by

E {ICS(θ)} =
[
2σ−2

w Re[QHE{Π}Q] 0
0T Mσ−4

w

]
. (15)

Thus, in order to find the expected FIM, we have to find the expected
projection matrix E{Π} = E{ΦT (ΦΦT )−1Φ}. For this purpose,
we use the following theorem.

Theorem 1. Let Φ be a random M ×N matrix with M < N , rank
M almost everywhere, and the probability density function (pdf)
fΦ(Φ). Furthermore, let Π = ΦT (ΦΦT )−1Φ be the N × N
orthogonal projection matrix of rank M onto the subspace spanned
by the rows of Φ and denote the space of points corresponding to all
such projection matrices by PM,N−M . If fΦ(Φ) is invariant under
the right-orthogonal transformation Φ → ΦR for any N × N or-
thogonal matrixR, then the PDF of Π is uniform on PM,N−M and
E{Π} = (M/N)IN .

Sketch of the Proof. It follows from [15, Th. 2.4.3] that H =
(ΦΦT )−1/2Φ is uniformly distributed on the Stiefel manifold
VM,N if fΦ(Φ) is invariant under any right-orthogonal transfor-
mation. It then follows from [15, Th. 2.2.1] that QHTHQT is
uniformly distributed on PM,N−M for any orthogonal Q indepen-
dent ofHTH . Now, since Π =HTH , it therefore follows that Π
is uniformly distributed on PM,N−M . Moreover, if follows that

E{Π} = QE{Π}QT =⇒ E{Π} ∝ IN (16)
tr(E{Π}) = E{tr(Π)} =M (17)

Eq. (17) follows from the fact that a projection matrix of rankM has
exactly M ones and N −M zeros as its eigenvalues. Combining
(16) and (17) readily gives E{Π} = (M/N)IN .

By use of Theorem 1, we can show that the sensing matrices of
type 1 and 2 from above result in an expected projection matrix of
E{Π} = (M/N)IN . As shown in Sec. 5, empirical evidence also
suggests that this is the case for the sensing matrices of type 3 and 4.
Interestingly, for the simplest possible sensing matrix, the Kronecker
sensing matrix which is the identity matrix with N − M random
rows removed, we obtain the same expected projection matrix. To
see this, consider that the projection matrix corresponding to such
a Kronecker sensing matrix K is given by Π = KTK which is a
diagonal matrix withM ones andN−M zeros uniformly distributed
on the diagonal. Thus, there are

NCM =

(
N
M

)
=

N !

M !(N −M)!
(18)

distinct projection matrices each with probability 1/NCM . The ex-
pected value of the projection matrix is therefore

E{Π} = 1

NCM

NCM∑
i=1

Πi =
N−1CM−1

NCM
IN =

M

N
IN (19)

where the second equality follows from the fact that there are
N−1CM−1 projection matrices Π with a one on the k’th diagonal
element.

4. A BOUND ON THE EXPECTED CRLB

Inserting the expected projection matrix of E{Π} = (M/N)IN
into (15) yields

E {ICS(θ)} =
M

N
I(θ) . (20)

Thus, on average, the elements of the FIM with CS is M/N times
the elements of the FIM without CS. The expected inverse FIM can
be bounded as

E
{
I−1

CS (θ)
}
≥ (E {ICS(θ)})−1 =

N

M
I−1(θ) . (21)

SinceM < N in CS, the expected CRLB with CS increases as com-
pared to the case without CS. Interestingly, the popular Gaussian and
nearly orthogonal sensing matrices do not on average perform bet-
ter than the Kronecker sensing matrix from an estimation theoretic
point of view. Thus, on average, the Gaussian and the nearly or-
thogonal sensing matrices of the form outlined above decrease the
estimation accuracy by an amount equal to the case where random
samples are simply thrown away. Furthermore, the expected estima-
tion accuracy decreases inversely proportional to at least the number
of samples that we retain in the data acquisition step of CS. This
was also demonstrated in [10] in which the direction-of-arrival esti-
mation accuracy for a varying M was compared to the CRLB. Can
we do any better than this? That is, can we select a sensing ma-
trix such that the elements of the inverse FIM with CS are closer to
the elements of the CRLB without CS? To answer this question, we
first take a closer look at the orthogonal projection matrix Π. From
(17), we have that the trace of an expected projection matrix must
be equal to M . All projection matrices must fulfil this constraint so
if we wish to construct a diagonal expected projection matrix with
equal elements, we therefore have that E{Π} = (M/N)IN . This
result is the same as the expected projection matrix for the popular
sensing matrices presented above. However, as we saw in Sec. 3.1,
it is possible to design a sensing matrix such that the CRLB is unaf-
fected provided that the columns ofQ are spanned by the rows of Φ.
Unfortunately, since the design of such a sensing matrix requires that
we know the parameters we wish to estimate, it is infeasible, unless
we have a strong prior knowledge about the values of the missing pa-
rameters. In this case, however, it may be better to employ Bayesian
inference methods which offer a unified way of incorporating prior
knowledge.

5. SIMULATIONS

We demonstrate the validity of our analysis on a simple but well-
known example. In the example, we consider a complex sinusoid in
complex white Gaussian noise, i.e.,

xn = αe(jωn+jϕ) + wn , for n = 0, . . . , N − 1 (22)

where α > 0, ϕ ∈ [−π, π] and ω ∈ [−π, π] are the amplitude,
phase and (angular) frequency, respectively. The noise variance is
σ2
w. The CRLB for this signal is well-known and given by [13]

var(α̂) ≥ σ2
w

2N
var(ϕ̂) ≥ σ2

w(2N − 1)

α2N(N + 1)

var(ω̂) ≥ 6σ2
w

α2N(N2 − 1)
var(σ̂2

w) ≥
σ4
w

N
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Fig. 1. Estimated pdf of the CRLB for the frequency parameter
based on 100,000 Monte Carlo runs. In each run, sensing matri-
ces of type 1-4 and the Kronecker matrix all of size 16 × 64 were
generated.

E-CRLB-CS Type 1 Type 2 Type 3 Type 4 Kron

E{var(α̂)} 3.125 3.363 3.366 3.365 3.371 3.125
E{var(φ̂)} 12.21 13.42 13.41 13.40 13.41 13.31
E{var(ω̂)} 0.0092 0.0101 0.0101 0.0101 0.0101 0.0101

Table 1. The mean value for the CRLB based on 100,000 Monte
Carlo runs. In each run, sensing matrices of type 1-4 and the Kro-
necker matrix all of size 16 × 64 were generated. All values are
scaled by a factor of 1000.

and the k’th row ofQ is

[Q]k: =
[
e(jωn+jϕ) jαe(jωn+jϕ) jαne(jωn+jϕ)

]
. (23)

For each of the four types of sensing matrices and for the Kronecker
matrix, we ran 100,000 Monte Carlo runs in which we calculated the
inverse FIM given by the inverse of (14). The size2 of the sensing
matrices was 16× 64. For the diagonal elements of the inverse FIM
corresponding to the amplitude, phase and frequency, we calculated
their 500 bins normalised histograms and mean values. Fig. 1 shows
the normalised histograms of the CRLB for the frequency parameter.
Clearly, the histograms are almost coinciding with the exception of
the histogram corresponding to the Kronecker sensing matrix. Fig. 1
also shows the CRLB without CS as well as the lower bound for the
expected CRLB with CS. Table 1 lists the mean values of the CRLB
with CM corresponding to the amplitude, phase and frequency. The
lower bound for the expected CRLB is also listed. Again, we see
the same pattern; the mean values for the type 1-4 sensing matrices
were more or less the same while the mean value for the Kronecker
sensing matrix was slightly different. All values were on or above
the lower bound for the expected CRLB.

6. CONCLUSION

In this paper, we have analysed compressed sensing (CS) from an
estimation theoretic point of view by use of the Cramer-Rao lower
bound (CRLB). Not surprisingly, our analysis have shown that CS on
average degrades our ability to estimate continuous parameters. For

2As a rule of thumb, the value of M should be approximately four times
the number of unknown parameters [4].

some of the popular sensing matrices such as the Gaussian sensing
matrix, we quantified the expected degradation by showing that the
ratio between the expected CRLB with CS and the CRLB without
CS is lower bounded by the ratio between the number of columns
N and the number of rows M of the sensing matrix. Perhaps more
surprisingly, we also showed that the bound is the same for the Kro-
necker sensing matrix. That is, from an estimation theoretic point of
view some of the popular sensing matrices degrade on average our
estimation accuracy by an amount equal to the situation in which we
throw N −M random samples away.

7. REFERENCES

[1] Stephane Mallat and Zhifeng Zhang, “Matching pursuit with
time-frequency dictionaries,” IEEE Trans. Signal Process., vol.
41, no. 12, pp. 3397–3415, Dec. 1993.

[2] S. Chen and D. Donoho, “Basis pursuit,” in Rec. Asilomar
Conf. Signals, Systems, and Computers, 1994.

[3] E. J. Candès, J. Romberg, and T. Tao, “Stable signal recovery
from incomplete and inaccurate measurements,” Communica-
tions on Pure and Applied Mathematics, vol. 59, no. 8, pp.
1207–1223, Aug. 2006.

[4] E. J. Candès and M. B. Wakin, “An introduction to compressive
sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–
30, Mar. 2008.

[5] E. J. Candès, Y. Eldar, and D. Needell, “Compressed sensing
with coherent and redundant dictionaries,” Applied and Com-
putational Harmonic Analysis, vol. 21, no. 1, pp. 59–73, 2010.

[6] A. Hormati, A. Karbasi, S. Mohajer, and M. Vetterli, “An es-
timation theoretic approach for sparsity pattern recovery in the
noisy setting,” Unpublished manuscript, Nov. 2009.

[7] V. Abolghasemi, S. Ferdowsi, B. Makkiabadi, and S. Sanei,
“On optimization of the measurement matrix for compressive
sensing,” in Proc. European Signal Processing Conf., Aug.
2010, pp. 427–431.

[8] M. F. Duarte and R. G. Baraniuk, “Spectral compressive sens-
ing,” Unpulished manuscript, 2011.

[9] R. G. Baraniuk, “Compressive sensing,” Lecture Notes in IEEE
Signal Processing Magazine, vol. 24, no. 4, pp. 118–120, Jul.
2007.

[10] M. G. Christensen and J. K. Nielsen, “Joint direction-of-arrival
and order estimation in compressed sensing using angles be-
tween subspaces,” in Proc. IEEE Workshop on Stat. Signal
Process., Jun. 2011, pp. 449–452.

[11] B. Babadi, N. Kalouptsidis, and V. Tarokh, “Asymptotic
achievability of the Cramer-Rao bound for noisy compressive
sampling,” IEEE Trans. Signal Process., vol. 57, no. 3, pp.
1233–1236, Mar. 2009.

[12] Z. Ben-Haim and Y. Eldar, “The Cramer-Rao bound for esti-
mating a sparse parameter vector,” IEEE Trans. Signal Pro-
cess., vol. 58, no. 6, pp. 3384–3389, Jun. 2010.

[13] S. M. Kay, Fundamentals of Statistical Signal Processing, Vol-
ume I: Estimation Theory, Prentice Hall PTR, Mar. 1993.

[14] R. G. Baraniuk, M. A. Davenport, R. A. DeVore, and M. B.
Wakin, “A simple proof of the restricted isometry property for
random matrices,” Constructive Approximation, vol. 28, no. 3,
pp. 253–263, Dec. 2008.

[15] Y. Chikuse, Statistics on Special Manifolds, Springer, 1 edi-
tion, Feb. 2003.


	 Introduction
	 Cramer-Rao Lower Bound
	 The Expected Projection Matrix
	 Fisher Information Matrix in Compressed Sensing
	 Typical Sensing Matrices

	 A Bound on the Expected CRLB
	 Simulations
	 Conclusion
	 References

