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ABSTRACT

Joint fundamental frequency and model order estimation is an im-
portant problem in several applications such as speech and music
processing. In this paper, we develop an approximate estimation
algorithm of these quantities using Bayesian inference. The infer-
ence about the fundamental frequency and the model order is based
on a probability model which corresponds to a minimum of prior
information. From this probability model, we give the exact poste-
rior distributions on the fundamental frequency and the model order,
and we also present analytical approximations of these distributions
which lower the computational load of the algorithm. By use of sim-
ulations on both a synthetic signal and a speech signal, the algorithm
is demonstrated to be more accurate than a state-of-the-art maximum
likelihood-based method.

Index Terms— Fundamental frequency, Bayesian inference and
model comparison, Zellner’s g-prior.

1. INTRODUCTION

Fundamental frequency estimation is an important problem in sev-
eral applications such as music processing [1], speech processing
[2], and electrocardiography [3]. In these applications, an approxi-
mately periodic signal is often assumed to be observed in additive
noise, and the problem is to estimate the fundamental frequency
from the observations. A periodic signal consists of l − 1 overtone
partials {ωi}li=2 which are related to the fundamental frequency ω
by ωi = iω. For a periodic signal, the fundamental partial and the
overtone partials are referred to as harmonic components or harmon-
ics, and the number of harmonics l is usually unknown. Numerous
fundamental frequency estimation algorithms have been suggested
in the literature. The simplest algorithms are the non-parametric
methods based on, for example, the auto-correlation function [4] or
the cepstrum [5]. The more advanced algorithms are based on para-
metric models of the observed signal, and inference about the fun-
damental frequency is typically based on maximum likelihood (ML)
methods [6], subspace-based methods [7], filtering methods [8], or
Bayesian methods [9,10]. We refer the interested reader to [11] for a
review of many of the non-Bayesian methods. Only a few of the sug-
gested methods assume that the number of harmonics is unknown.
In order to perform model selection, these methods typically add an
order dependent penalty term to the log-likelihood function or com-
pare the angle between subspaces [12]. These methods can usually
not be used for neither model comparison nor model averaging.

Mathematically speaking, the problem of estimating the funda-
mental frequency is typically defined in the following way. We ob-
serve a discrete-time signal of the form

x(n) = s(n) + e(n) , n = 0, 1, · · · , N − 1 (1)

where {x(n)}N−1
n=0 , {s(n)}N−1

n=0 , and {e(n)}N−1
n=0 are the observed

signal, the systematic part of the signal, and the stochastic part of
the signal, respectively. The systematic part consists of l harmonics
and is at time index n given by

s(n) =

l∑
i=1

αi exp(jiωn) (2)

where j =
√
−1 is the imaginary unit. For the i’th harmonic, the

complex amplitude αi, the in-phase component ai, the quadrature
components bi, the amplitude Ai, and the phase φi are related by
αi = ai + jbi = Ai exp(jφi). Note that a real-valued signal can
be cast into the form of a complex-valued signal by computing its
down-sampled analytic signal [13]. Provided that the frequencies of
the first and last harmonics are not too close to zero and π (relative
to N ), respectively, the solution to the estimation problem using the
down-sampled analytic signal yields the same result as for the real-
valued signal [11]. In this paper, we use the complex-valued signal
model since it leads to simpler notation and faster algorithms [7,11].

The primary aim of this paper is to develop a default estima-
tion scheme for estimating the fundamental frequency and the num-
ber of harmonics. By the word default we mean that we develop
a nearly user-parameter free algorithm which automatically follows
from a minimum of prior information and a few minor approxima-
tions. The approximations are made so that we obtain closed-form
expressions and a computational load comparable to the methods
suggested in [11]. Moreover, we compare the proposed method to
the algorithm proposed in [11, Sec. 2.6], and we indicate by use of
simulation examples that our proposed method is superior to this.
The paper is organised as follows. The inference method and the
probability model is described in Sec. 2, and inference about the fun-
damental frequency and the number of harmonics is made in Sec. 3.
In Sec. 4, we develop an approximation which decreases the compu-
tational load, and we evaluate the approximation in Sec. 5.

2. PROBLEM FORMULATION

Our primary aim is to make inference about the fundamental fre-
quency ω and the model order l given our prior information I and
the N data points, which we have collected in the vector x. That is,
we wish to find the posterior distributions

p(ω, l|x, I) = p(ω|x, l, I)p(l|x, I) (3)

and some of their statistics such as the mode and the moments.
The model order l labels a unique model Ml which is an hypo-
thesis of how the data x have been generated. Each model Ml is
parametrised by the model parameters θl ∈ Θl where Θl is the pa-
rameter space. For our problem, ω is one of these parameters, and



we refer to the remaining model parameters such as the noise vari-
ance and the complex amplitudes as the nuisance parameters. The
relationship between the data x and the modelMl is given by the
probability density function (pdf) p(x|θl, l, I) which is called the
data model or the sampling distribution. When viewed as a function
of the model parameters, the sampling distribution is referred to as
the likelihood function, and it plays an important role in statistics
where it is mainly used for parameter estimation. However, it can-
not alone be used for model comparison or selection since it suffers
from over-fitting. In a Bayesian framework, the model parameters
and the model order are random variables with the prior distributions
p(θl|l, I) and p(l|I), respectively, and these distributions contain
our state of knowledge before any data are observed. After observ-
ing some data, we update our state of knowledge by transforming
the prior distributions into the posterior distributions p(θl|x, l, I)
and p(l|x, I). We obtain the desired posterior distributions in (3) by
marginalising p(θl|x, l, I) over the nuisance parameters. The prior
and posterior distributions for the model parameters and the model
are connected by Bayes’ theorem

p(θl|x, l, I) =
p(x|θl, l, I)p(θl|l, I)

p(x|l, I)
(4)

p(l|x, I) =
p(x|l, I)p(l|I)

p(x|I)
(5)

where
p(x|l, I) =

∫
Θl

p(x|θl, l, I)p(θl|l, I)dθl (6)

is called the marginal likelihood or the evidence. For model com-
parison, the odds of two competing model orders k and i are often
compared. In this connection, we define the posterior odds

p(k|x, I)

p(i|x, I)
= BF[k, i]

p(k|I)

p(i|I)
(7)

where the Bayes’ factor is given by

BF[k, i] =
p(x|k, I)

p(x|i, I)
=
mk(x)

mi(x)
(8)

where mk(x) is an unnormalised marginal likelihood whose nor-
malising constant must be the same for both i and k. Working with
mk(x) rather than the normalised marginal likelihood p(x|k, I) is
usually much simpler. Moreover, p(x|k, I) does not even exist if
we use improper priors. In this case, we must require that improper
priors are only used for the common model parameters which have
the same meaning across all models. Otherwise, the Bayes’ factor
is indeterminate [14]. Since the prior and posterior distributions on
the model order are discrete, it is easy to find the posterior odds and
the posterior distribution once the Bayes’ factors are known. For ex-
ample, the posterior probability mass function (pmf) on the model
order is

p(l|x, I) =
BF[l; k]p(l|I)∑L
i=1 BF[i; k]p(i|I)

(9)

where the model order k labels some user selected base model which
we compare all other models against. Therefore, the main challenge
in Bayesian model comparison is to compute the Bayes’ factor for
competing pairs of models. However, before we can use Bayes’ the-
orem to make inference about the fundamental frequency and the
model order, we first have to turn our prior information I into a sam-
pling distribution and prior distributions on the model parameters.
The amount of prior information I we assume can be stated in the
following way.

Assumption 2.1. We are given N data points {x(n)}N−1
n=0 from

a zero-mean complex-valued signal which has been sampled at a
known and uniform sampling frequency. The signal is wide-sense
stationary (WSS) and consists of a systematic part which is periodic,
corrupted by additive noise, and bandlimited to the known angular
frequency interval [ωa, ωb].

Using Jaynes’ principles of maximum entropy and transforma-
tion groups [15], the following probability model can be shown
to automatically follow from the prior information I if N and the
signal-to-noise ratio (SNR) are large enough. It is given by

p(αl, σ
2, ω, l, g|I) ∝ CN (αl;0, gσ

2(ZHl Zl)
−1)(σ2(1 + g))−1

× (LWl)
−1IΩl(ω)IR+(g)IR+(σ2)IL(l) (10)

p(x|αl, σ2, ω, l, I) = CN (x;Zlαl, σ
2IN ) (11)

where (·)H denotes complex transposition and

x ,
[
x(0) · · · x(N − 1)

]T (12)

αl ,
[
α1 · · · αl

]T (13)

zi ,
[
exp(jiω0) · · · exp(jiω(N − 1))

]T (14)

Zl ,
[
z1 · · · zl

]
(15)

Moreover, Wl = ωb/l − ωa, IS(·) is the indicator function on the
set S, and L = {1, 2, · · · , L}, Ωl = [ωa, ωb/l], and R+ are the
set of candidate model orders, the set of candidate fundamental fre-
quencies, and the set of positive real numbers, respectively. The
parameter g is an auxiliary variable which is introduced to make the
inference more analytically tractable. The joint prior on αl and σ2

from (10) is known as the Zellner’s g-prior, and it has been exten-
sively studied for Bayesian linear regression [16].

3. INFERENCE

From the prior distribution in (10) and the sampling distribution in
(11), we now use Bayes’ theorem to compute the posterior distribu-
tions in (3). The joint posterior pdf marginalised over the complex
amplitudes and the noise variance is 1

p(ω, g, l|x) ∝
∫ ∞

0

∫
Cl

p(x|αl, σ2ω, g, l)p(αl, σ
2ω, g, l)dαldσ

2

∝ Γ(N)fl(ω, g)IΩl(ω)IR+(g)IL(l)

(πxHx)NLWl
(16)

where we have defined

fl(ω, g) , (1 + g)N−l−1[1 + g(1−R2
l (ω))]−N (17)

R2
l (ω) , xHP lx(xHx)−1 (18)

P l , Zl(Z
H
l Zl)

−1ZHl . (19)

The matrix P l is the projection matrix onto the space spanned by
the columns of Zl, and R2

l (ω) resembles the coefficient of deter-
mination from linear regression analysis where it is used to measure
the prediction performance. We can also marginalise (16) over g and
obtain the marginal posterior pdf on ω under model order l as

p(ω|x, l) =

∫ ∞
0

p(ω, g, l|x)

p(l)
dg ∝

∫ ∞
0

fl(ω, g)IΩl(ω)dg

∝ 2F1(N, 1; l + 1;R2
l (ω))IΩl(ω) (20)

1Note that the expressions from now on do not explicitly depend on the
prior information I to keep the notation uncluttered.



where 2F1 is the Gaussian hypergeometric function [17, Ch. 15].
Moreover, an unnormalised marginal likelihood is given by the fol-
lowing integral representation

ml(x) =
Γ(N)

(πxHx)NWl

∫
Ωl

∫ ∞
0

fl(ω, g)dgdω (21)

=
Γ(N)

(πxHx)N lWl

∫
Ωl

2F1(N, 1; l + 1;R2
l (ω))dω . (22)

Unfortunately, the statistical quantities of the posterior pdf on
the fundamental frequency such as the mode or the variance are
not available in closed-form due to the non-linear way that ω
parametrises the pdf in (20). Moreover, the posterior model or-
der probabilities are not available in closed-form since the integral
in (22) cannot be computed analytically. In Sec. 4, we discuss one
approximate way of finding these quantities and posterior probabili-
ties.

4. APPROXIMATION

Our approximation is based on a normal approximation of the pdf on
the fundamental frequency in (20), and a full Laplace approximation
of the double integral in (21). Since the function fl(ω, g) is not
symmetric and in order to avoid edge effects near g = 0, we use
the re-parametrisation τ = ln g with the Jacobian dg/dτ = exp(τ)
[16]. This re-parametrisation suggest that the posterior distribution
over g is approximately a log-normal distribution. With this, the
Laplace approximation of the integral in (21) is∫

Ωl

∫ ∞
0

f(ω, g)dgdω =

∫
Ωl

∫ ∞
−∞

exp(τ)f(ω, exp(τ))dτdω

= 2π exp(τ̂)f(ω̂, exp(τ̂))
√
sl(ω̂| exp(τ̂))γl(τ̂ |ω̂) (23)

where (ω̂, τ̂), sl(ω̂| exp(τ̂)), and γl(τ̂ |ω̂) are the mode and the
variances of the bivariate normal approximation of g(ω, τ) ,
exp(τ)f(ω, exp(τ)), respectively. Note that the cross-covariance is
zero. As shown in [16], τ̂ and γl(τ̂ |ω̂) are for ĝ , exp(τ̂) given by

τ̂ = ln

[√
β2
τ − 4ατ + βτ

−2ατ

]
(24)

γl(τ̂ |ω̂) =

[
N(1−R2

l (ω̂))ĝ

[1 + ĝ(1−R2
l (ω̂))]2

− (N − l − 1)ĝ

(1 + ĝ)2

]−1

(25)

with

ατ , −(1−R2
l (ω̂))l (26)

βτ , (N − 1)R2
l (ω̂)− l + 1 . (27)

The mode ω̂ is given by

ω̂ = arg max
ω∈Ωl

g(ω, τ) = arg max
ω∈Ωl

xHP lx (28)

and is the same as the ML-estimate [11] and independent of τ . Un-
fortunately, it is hard to find ω̂ since the cost-function in (28) has a
complicated multi-modal shape and is very sharply peaked around
ω̂. Typically, ω̂ is found by first evaluating the cost-function on a
fine grid and then performing a local optimisation around the max-
imum value of the cost-function on this grid. However, this proce-
dure might be too costly from a computational point of view since
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Fig. 1. The KL divergence between the true posterior distribution on
the model order and various approximate distributions on the model
order.

we have to evaluate the projection matrixP l for every candidate fre-
quency. We can speed up the computation significantly by making
the approximation

ω̂ ≈ arg max
ω∈Ωl

xHZlZ
H
l x = arg max

ω∈Ωl

‖ZHl x‖22 (29)

which can be computed efficiently using a single FFT [11]. To get
the exact estimate in (28), we may use the approximate estimate as
the starting point of a local optimisation using the exact cost-function
in (28). To find the variance sl(ω̂|ĝ) of the fundamental frequency,
we need to find the second order derivatives of ln g(ω, τ) w.r.t. ω
and evaluate it at the mode (ω̂, τ̂). It can be shown that it can be
approximated by

sl(ω̂|ĝ) ≈ 6(1 + ĝ)σ̂2
l

ĝN(N2 − 1)
∑l
i=1 |α̂i|2i2

(30)

where α̂l = (ZHZ)−1ZHx and σ̂2
l = N−1xH(IN − ĝP l/(1 +

ĝ))x which for ĝ → ∞ are the ML estimate of the i’th complex
amplitude and the noise variance, respectively. The exact expression
for sl(ω̂|ĝ) is much more complicated, and the expression in (30) is
a good approximation for a large N and a high SNR. Moreover, it
has the interesting interpretation that it is the asymptotic Cramer-Rao
lower bound for ĝ → ∞ with the true values of the noise variance
and the complex amplitudes replaced by their ML estimates.

A normal approximation of the pdf on the fundamental fre-
quency in (20) now readily follows from (23) as

p(ω|x, l) ≈
∫ ∞
−∞
N ([ω, τ ]T , [ω̂, τ̂ ]T , diag[sl(ω̂|ĝ), γl(τ̂ |ω̂)])dτ

= N (ω, ω̂, sl(ω̂|ĝ)) (31)

where diag[·] transforms a vector into a diagonal matrix.

5. SIMULATIONS

We first evaluated the accuracy of the Laplace approximation to the
posterior distribution on the model order. To do this, we used the
Kullback-Leibler (KL) divergence given by

KL(p‖q) =
L∑
l=1

p(l|x) ln

[
p(l|x)

q(l|x)

]
, (32)

to measure the distance between the true pdf p(l|x) and the approx-
imate pdf q(l|x). The true posterior pdf p(l|x) was computed from
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Fig. 2. The spectrogram of a female speech signal and the estimated
fundamental frequency.

(9), (8), and (22) with the latter being computed using numerical in-
tegration on a fine grid. For q(l|x), we instead of numerical integra-
tion evaluated the double integral in (21) using the Laplace approx-
imation in (23)2. For comparison, we also computed q(l|x) using
the ML-based method suggested in [11, Sec. 2.6] and the uniform
distribution. Fig. 1 shows the average KL divergence for 500 Monte
Carlo runs at various SNRs in steps of 1 dB from -10 dB to 10 dB.
The figure clearly indicates that the proposed method ’FL’ was more
accurate than the ML-based method. For a low SNR, however, the
’FL’ approximation was not very accurate.

We also evaluated the proposed method on a speech signal which
originates from a female voice uttering "Why were you away a year,
Roy?". Fig. 2 shows the spectrogram of the signal and the estimated
fundamental frequency for a fixed model order of l = 5, the pro-
posed method with a maximum model order of 20, and the ML-based
method. The speech signal has a sampling frequency of 8 kHz, and
we partitioned it in blocks of 20 ms corresponding to N = 80 sam-
ples. The ML-based method had a few outliers, whereas the pro-
posed method did not have any outliers. However, when the model
order was fixed to l = 5 for all blocks, the proposed method had a
lot of outliers. This illustrates why model order selection is impor-
tant even if we are only interested in an estimate of the fundamental
frequency.

6. CONCLUSION

In this paper, we have proposed an approximate joint fundamental
frequency and model order estimator which can be used for a wide
range of applications. From a minimum of prior information and
by use of a few approximations, the estimator was developed in a
Bayesian framework. Using a Laplace approximation, approximate
expressions were developed for the posterior distributions on the fun-
damental frequency and the model order to lower the computational

2A Matlab implementation of the algorithm is available at http://
kom.aau.dk/~jkn/publications/publications.php

load of the algorithm. The simulations demonstrated that the pro-
posed method gave a better approximation of the posterior distribu-
tion on the model than a state-of-the-art ML-based method.
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