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ABSTRACT

This paper presents a fast implementation of the MUlti-
ple SIgnal Classification (MUSIC) estimation criterion for
fundamental frequency estimation of harmonic signals with
known or unknown model orders. First, we reformulate the
MUSIC estimator such that the MUSIC estimate can be
computed directly from the signal subspace or just an ar-
bitrary basis thereof. We also discuss the selection of a sub-
space tracker based on the known or unknown rank of the
signal and noise subspaces. Second, we introduce an imple-
mentation of the MUSIC estimator that only involves one
FFT for known model orders, and we extend it to the case
of unknown model orders. The performance gain in terms of
computation times obtained by the efficient implementation
is significant which is demonstrated through simulations.

1. INTRODUCTION

The problem of estimating the fundamental frequency of a
periodic signal in white Gaussian noise is a classical sig-
nal processing problem and is encountered in many speech
and audio applications. This comprises among others speech
and audio coding, automatic music transcription and musi-
cal genre classification. The signal model in these problems
is

x[n] =
LX

k=1

Akejkω0n + e[n] (1)

where Ak = |Ak|e
jφk is the complex amplitude of the kth

harmonic, L is the model order, ω0 is the fundamental an-
gular frequency, and e[n] is complex white Gaussian noise
[1]. The MUSIC estimator is a subspace-based method that
can be used for estimating the frequency of individual sinu-
soids corrupted with white Gaussian noise [2]. In [3] and
[4] the MUSIC estimation criterion has been used for joint
estimation of the fundamental frequency and the model or-
der of a periodic signal as in (1). Further, this has been
extended to estimation of a set of fundamental frequencies
in multi-pitch signals [5]. The MUSIC algorithm for both
known and unknown model orders suffers from high compu-
tational complexity. This is mainly due to two integral steps
of the MUSIC algorithm: i) The forming of an estimate of
the M × M auto-correlation matrix and the partitioning of
its eigenspace into a signal and a noise subspace spanned by
the most and the least dominant eigenvectors, respectively.
ii) The minimization of a non-convex cost function which
depends on the noise subspace eigenvectors. The first step
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was originally resolved by using an eigenvalue decomposition
(EVD) to form the signal and noise subspaces, and it has a
dominating cost of O(M3). Throughout the years exten-
sive research has resulted in several subspace tracking algo-
rithms with a lower computational complexity. An overview
over some of these algorithms is given in [6] and [7]. The
algorithms can be grouped into high, medium and low com-
plexity subspace trackers with a computational complexity of
O(M2L′), O(ML′2) and O(ML′), respectively, where M is
the length of a sample vector from the signal in (1) and L′ is
the rank of the subspace with L′ = L for the signal subspace
and L′ = M − L for the noise subspace. The low complex-
ity subspace trackers introduce approximations in order to
achieve the O(ML) cost, and this influences the performance
of the subspace trackers with respect to orthonormality and
convergence rate. Additionally, most of the low complexity
subspace trackers only track an arbitrary orthonormal basis
of the subspace, and not the subspace eigenvectors. Some ex-
amples are PAST [8], NIC [9], FAPI [10] and FDPM [7]. Only
a few low complexity subspace trackers track the eigenvec-
tors with some examples being PASTd[8], SWASVD3 [11],
LORAF3 [12] and FST [13]. Efficient implementation of the
minimization of the non-convex cost function in MUSIC has
not been treated in many publications. In [14], root MUSIC
is proposed where the MUSIC estimate is found by examin-
ing the roots of a polynomial, and in [4] an efficient imple-
mentation is proposed using an FFT for each noise subspace
eigenvector.

In this paper, we propose efficient implementations of
the MUSIC estimation criterion for the signal model in (1).
First, the selection of the subspace tracker with respect to
rank and whether or not the model order is known is treated.
Second, we introduce a fast implementation of the cost func-
tion of the MUSIC estimator for known model orders. This
involves just one FFT regardless of the model order without
direct access to the signal or noise subspace eigenvectors, but
only an arbitrary orthonormal basis of the subspace. This
enables the use of a fast signal subspace tracker and MUSIC
coherently. The algorithm is also extended for the case of
unknown model orders. The paper is organized as follows.
In Section 2 we restate the MUSIC estimator for known and
unknown model orders. This serves as the starting point for
the proposed performance improvements introduced in Sec-
tion 3. These improvements are evaluated in Section 4, and
Section 5 concludes the paper.

2. THE MUSIC ESTIMATION CRITERION

In this section, we present the basics of the MUSIC estima-
tion criterion for known and unknown model orders. Con-
sider the assumed model of the data in (1) and denote the
M -dimensional signal vector x[n] as

x[n] =
h
x[n] x[n + 1] · · · x[n + M − 1]

iT

(2)



where [·]T denotes the transpose. If the phases of the com-
plex amplitudes are uniformly distributed on the interval
[−π, π], the auto-correlation matrix of the data vector x[n]
is [1]

Rxx = E
n

x[n]xH [n]
o

= AP A
H + σ2

eI (3)

where E {·} denotes the statistical expectation, and (·)H de-
notes the conjugate transpose or Hermitian. The scalar σ2

e

is the variance of the complex white Gaussian noise assumed
uncorrelated with the signal, I is the M×M identity matrix,
and P = diag{[P1 P2 · · · PL]} is a diagonal matrix with
Pk being the power of the kth complex amplitude. Further,
the matrix A is given by

A = [a1 a2 · · · aL] (4)

where the vector ai =
ˆ
1 ejω0i · · · ej(M−1)ω0i

˜T
. The

EVD of (3) is [7]

Rxx = [S G]

»
DS + σ2

eIS 0

0 σ2
eIG

– »
SH

GH

–
(5)

where S = [s1 s2 · · · sL] contains the L dominant or-
thonormal eigenvectors that span the signal subspace, and
G = [g1 g2 · · · gM−L] contains the M − L least domi-
nant orthonormal eigenvectors that span the noise subspace.
The columns of the unitary matrix U = [S G] are the
eigenvectors of Rxx. The matrix DS is diagonal and con-
tains the L largest eigenvalues of AP AH in decreasing or-
der. The noise subspace is orthogonal to the signal subspace
which is also spanned by the columns of A. Therefore, the
noise subspace is orthogonal to A which yields

A
H

G = 0 . (6)

Define the cost function of the MUSIC estimator as

J = ‖AH
G‖2

F = Tr
n

A
H

GG
H

A
o

(7)

where Tr{·} denotes the trace, and ‖ · ‖F denotes the Frobe-
nius norm. Moreover, let Ω be a set of candidate funda-
mental frequencies with cardinality |Ω|. Then, the MUSIC
estimator for known model orders is given by

bω0 = arg min
ω0∈Ω

J . (8)

Since the value of the estimator in (8) varies with the model
order L, the MUSIC estimator must be normalized to enable
joint estimation of fundamental frequency and model order.
This yields the MUSIC estimator for unknown model orders
[4]

(bω0, bL) = arg min min
ω0∈Ω, L∈L

J

ML(M − L)
(9)

where L is a set of candidate model orders with cardinality
|L|. The matrix A depends on both ω0 and L while the noise
subspace matrix G only depends on L. Additionally, the set
of model orders L depends on ω0 since the harmonics are
bounded by the Nyquist frequency.

3. EFFICIENT IMPLEMENTATION

Recall from Section 2 that the MUSIC estimation process
consists of two steps: i) Compute the noise subspace ma-
trix G from the observed data. ii) Find the minimum of
a non-convex cost function. In this section we discuss how
to implement both steps in an efficient way with respect to
the rank of the signal and noise subspace and taking into

account whether the model order is known or unknown. In
Subsection 3.1 we reformulate the first step to enable the use
of a fast subspace tracker in situations with known model or-
ders, and we discuss the limitation of fast subspace trackers
in situations with unknown model orders. In Subsection 3.2
and 3.3 we propose an efficient implementation of the second
step for known and unknown model orders, respectively.

3.1 Subspace Tracking

The estimators in (8) and (9) make use of the cost function
in (7). This cost function is formulated to be dependent on
the noise subspace matrix G. If the rank of the matrix G is
greater than the rank of the signal subspace matrix S, the
computational complexity can be lowered by rewriting (7)
using I = SSH + GGH into

J = ML − ‖AH
S‖2

F = ML − Tr
n

A
H

SS
H

A
o

(10)

so that the cost function now depends on S. Thus for the
fastest evaluation of J , the formulation involving the sub-
space of the lowest rank, the minor subspace, should be used.

If only an arbitrary orthonormal basis W of the subspace
spanned by S is available and the model order is known, (10)
can be reformulated into

J = ML − ‖AH
W ‖2

F (11)

since
SS

H = W Q(W Q)H = W W
H (12)

where Q is an arbitrary unitary matrix. The last reformula-
tion is very important since it allows the use of fast subspace
trackers that only track an arbitrary orthonormal basis of S
or G. The MUSIC estimator for unknown model orders in
(9) requires the cost function in (7) to be evaluated for each
candidate model order. If for example S is known for the
largest candidate model order, this reevaluation of J can be
performed by successively removing the last column of S
until J is evaluated for all candidate model orders. If, how-
ever, only an arbitrary orthonormal basis W of the subspace
spanned by S is available for the largest candidate model or-
der, this approach fails. This is because projection matrices
of subsets of S cannot uniquely be recovered from subsets
of W . To demonstrate this, partition S = [S1 S2] and
W = [W 1 W 2] into two subsets whose dimensions are
pairwise equal. Inserting this into (12) readily yields

S1S
H
1 + S2S

H
2 = W 1W

H
1 + W 2W

H
2 (13)

from which S1S
H
1 cannot be recovered since only W 1 and

W 2 are known. That is, the subspace trackers that track the
eigenvectors like PASTd[8], LORAF3 [12] and FST [13], and
not just any arbitrary orthonormal basis, must be used in
the case of unknown model orders. Alternatively, the model
order can be estimated before the frequency estimation, but
this approach suffers from a less accurate estimate as com-
pared to the joint estimation in (9).

3.2 Known Model Orders

In this section we propose an efficient implementation of the
cost function in (7) for known model orders. The algorithm
is extended in Subsection 3.3 to the case of unknown model
orders. We consider the case where an arbitrary basis W of
the signal subspace matrix S is known. Define the matrix M
as M = I −W W H and note that this matrix is Hermitian.
Evaluating the trace of the cost function in (7) yields

J =
LX

i=1

a
H
i Mai =

LX

i=1

Ji (14)



where Ji denotes the ith partial cost function. The partial
cost function Ji can be rewritten into

Ji =

2
6664

1
e−jωi

...
e−j(M−1)ωi

3
7775

T 2
64

m11 · · · m1M

...
. . .

...
mM1 · · · mMM

3
75

2
64

1
ejωi

· · ·
ej(M−1)ωi

3
75

=

2
6666666664

m1M

...
m12 + m23 + · · · + m(M−1)M

m11 + m22 + m33 + · · · + mMM

m21 + m32 + · · · + mM(M−1)

...
mM1

3
7777777775

T
2
66666666664

ej(M−1)ωi

...
ejωi

1
e−jωi

...
e−j(M−1)ωi

3
77777777775

=

M−1X

r=−(M−1)

c[r]ejrωi (15)

where c[r] is the sum of the elements on the rth diagonal of
M . Exploiting the Hermitian property of M , (15) can be
rewritten as

Ji = c[0] +

M−1X

r=1

c[r]ejrωi +

−1X

r=−(M−1)

c[r]ejrωi

= c[0] +

"
M−1X

r=1

c∗[r]e−jrωi

#∗

+

M−1X

r=1

c∗[r]e−jrωi

= 2Re

"
N−1X

r=0

g[r]e−jrωi

#
= 2Re

h
G(ejωi)

i
(16)

where [·]∗ denotes the complex conjugate and g[r] is given
by

g[r] =

8
<
:

c[0]/2 for r = 0

c∗[r] for r = 1, 2, · · · , M − 1

0 for r = M, M + 1, · · · , N − 1

. (17)

If the discrete-time Fourier transform in (16) is sampled with
ω = 2πk/N , the discrete Fourier transform Ji[ki] is obtained.
This is desirable from a computational complexity point of
view since it can be computed by an FFT of g[r] with ki as
the frequency index. The dominant cost for evaluating (16)
is thus O(N log2 N) where N is the FFT-length.

The cost function in (14) can be computed from (16).
First, we simply evaluate (16) for i = 1 and obtain J1[k]
from which we create the partial cost function vector J1 con-
taining the values corresponding to the desired subset Ω of
candidate fundamental frequencies. Next, for i = 2, 3, · · · , L
we extract every ith sample from J1[ki] for k 7→ ω ∈ Ω to
obtain J2, J3, · · · , JL, all of the same length as J1. Note,
that since we extract the samples from J1[k], we need to re-
strict the maximum frequency in Ω to be less than π/L. The
discrete version of the cost function in (14) defined on the
subset Ω of candidate fundamental frequencies is thus the
sum of the partial cost function vectors with the resolution
determined by the FFT-length, i.e.

J =
LX

i=1

J i . (18)

Using this approach, the dominant cost of computing
the cost function in (14) from the sequence g[r] is still
O(N log2 N) computations.

Input:
- Orthonormal basis of the signal subspace W ∈ CM×L

- FFT-length N
- Candidate frequencies Ω = {ωmin, · · · , ωmax} with
cardinality |Ω|

Step 1: Find g[r]

c′ = Me1 −

M
X

k=1

[Wa]k:k+M−1,:[W ]Hk,: (19) O(M2L)

g[r] =

8

>

<

>

:

c[0]/2 for r = 0

c∗[r] for 1 ≤ r < M

0 for M ≤ r < N

(17) O(1)

Step 2: Compute J1[k] from an FFT of g[r]

J1[k] = 2Re

"

N−1
X

r=0

g[r]e−j2πrk/N

#

(16) O(N log2 N)

Step 3: Downsample J1[k]

J [k] =
L

X

i=1

J1[ki] ∀k 7→ ω ∈ Ω (18) O(L|Ω|)

Table 1: Fast evaluation of the MUSIC estimator for known
model orders.

In (16) the discrete Fourier transform is computed from
the sequence g[r] defined in (17). Recall, that c∗[r], r =
0, 1, · · · , M − 1 is computed from the lower triangular part
of M . Therefore, we reformulate M = I − W W H to yield
c∗[r] directly by

c
′ =

2
664

c[0]
c∗[1]

...
c∗[M − 1]

3
775 =

2
664

m11 + m22 + m33 + · · · + mMM

m21 + m32 + · · · + mM(M−1)

...
mM1

3
775

= Me1 −

MX

k=1

[W a]k:k+M−1,:[W ]Hk,: (19)

where e1 = [1 0 · · · 0]
T

is the unit vector and W a =

[W 0]
T

is an augmented matrix obtained by combining
W and the M − 1 × L zero matrix. The notation [·]a:b,c:d

indicates that a submatrix is created from the rows running
from a to b and the columns running from c to d of the
matrix. If all the rows or columns are used from the matrix,
we simply write ’:’. From (19) we readily obtain g[r] defined
in (17).

This concludes our proposed fast implementation of the
evaluation of the MUSIC estimator in (8). The algorithm is
summarized in Table 1 where the different dominant costs
are given. The dominant cost is O(M2L) + O(N log2 N).
This cost should be compared to the dominant cost O((M −
L)N log2 N) + O((M − L)L|Ω|) of the fast implementation
proposed in [4]. Another obvious advantage of our algorithm
is that it computes the MUSIC estimator from an arbitrary
orthonormal basis of the signal subspace and not the noise
subspace eigenvectors.

3.3 Unknown Model Orders

We now extend our fast implementation of the MUSIC es-
timator for known model orders to the case with unknown
model orders in (9). The extension is straightforward be-
sides that the eigenvectors of the auto-correlation matrix in
(5) spanning the signal subspace must be known instead of
just an arbitrary basis of it.

The MUSIC estimator for unknown model orders is ob-
tained by extending the MUSIC estimator for known model
orders to be evaluated for each candidate model order in the



Input:
- Signal subspace eigenvectors S ∈ CM×Lmax

- FFT-length N
- Candidate frequencies Ω = {ωmin, · · · , ωmax} with
cardinality |Ω|
- Candidate model orders L = {Lmin, · · · , Lmax} with
cardinality |L|
for l = Lmin, · · · , Lmax

Step 1: Find gl[r]
if l = Lmin

c′l = Me1 −
M

X

k=1

[Sa]k:k+M−1,1:l[S]Hk,1:l (20) O(M2l)

else

c′l = c′l−1 −
M

X

k=1

[Sa]k:k+M−1,l[S]Hk,l (21) O(M2)

end

gl[r] =

8

>

<

>

:

cl[0]/2 for r = 0

c∗l [r] for 1 ≤ r < M

0 for M ≤ r < N

(17) O(1)

Step 2: Compute J1,l[k] from an FFT of gl[r]

J1,l[k] = 2Re

"

N−1
X

r=0

gl[r]e
−j2πrk/N

#

(16) O(N log2 N)

Step 3: Downsample J1,l[k]

Jl[k] =

l
X

i=1

J1,l[ki] ∀k 7→ ω ∈ Ωl (18) O(l|Ωl|)

end

Table 2: Fast evaluation of the MUSIC estimator for unknown
model orders.

subset L and then seeking the joint minimum among the can-
didate fundamental frequencies and model orders. Thus for
all L ∈ L, the MUSIC estimator for known model orders is
evaluated using the proposed implementation in Subsection
3.2 for a subset of candidate fundamental frequencies ΩL de-
pendent on the model order where the set ΩL is a subset of
Ω such that ΩL = {ω|ω ∈ Ω, ω < π/L}. This dependence is
required since the largest harmonic in the observed signal in
(1) is bounded by the Nyquist frequency.

The proposed implementation structure entails recalcu-
lation of the sequence g[r] for all L ∈ L. This can be done
recursively if equation (19) is rewritten into

c
′ = Me1 −

LX

l=1

MX

k=1

[Sa]k:k+M−1,l[S]Hk,l (20)

from which the recursive form for l = 2, · · · , Lmax is obtained
as

c
′
l = c

′
l−1 −

MX

k=1

[Sa]k:k+M−1,l[S]Hk,l (21)

where c′
1 is found from (20) for L = 1.

Table 2 summarizes our fast implementation of the MU-
SIC estimator for unknown model orders. The recursive cal-
culation of the sequence g[r] ensures that the dominant cost
of the algorithm in Table 2 only increases due to the need for
computing an FFT |L| times instead of one time which was
the case for the implementation of the MUSIC estimator for
known model orders in Table 1. Thus, the dominant cost is
O(M2Lmax) + O(|L|N log2 N) operations.

4. SIMULATION RESULTS

In this section, the MUSIC estimator for known and un-
known model orders is evaluated using different implemen-
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Figure 1: MUSIC frequency estimates of a synthetic signal with
a known model order and proposed cost function implementation
(top), using an EVD (top curve) and an FDPM subspace tracker
(bottom curve), respectively. The bottom plot shows the value of
the MUSIC cost function when using FDPM.

tations. First, we evaluate the performance improvement in
the case of known model orders using a synthetic signal. Sec-
ond, we evaluate the performance improvement in the case
of unknown model orders using a violin signal.

Different implementations of the MUSIC estimator for
known model orders were tested on a synthetic signal since
the model order had to be known. The synthetic signal was
generated as a harmonic signal with a model order of three,
a fundamental frequency changing in steps, a sampling fre-
quency fs = 8000 kHz and an SNR of 10 dB. The set of
candidate frequencies Ω was chosen to be in the interval
from 60 Hz to 1000 Hz. An FFT-length of 2048 was cho-
sen which resulted in a frequency resolution of 3.9 Hz, and
the sample size was M = 82. In the top plot of Fig. 1 two
curves are shown. The upper curve was generated using an
EVD while the lower curve was generated using the FDPM
subspace tracker [7]. The bottom plot shows the minimum
value of the MUSIC cost function when the FDPM subspace
tracker was used. It is seen that the use of the FDPM tracker
resulted in a less accurate estimate due to the convergence
time in the frequency transitions. The computation time,
however, was significantly reduced as shown in Table 3. The
table shows the computation time for the old implementation
and the new implementation of the MUSIC cost function for
both the EVD and the FDPM tracker. Notice that the main
source of the computational complexity was the use of an
EVD instead of the FDPM subspace tracker. The perfor-
mance improvement obtained using the new implementation
of evaluation of the MUSIC cost function had a significant
impact in the case of the FDPM subspace tracker, but less
impact in the case of an EVD.

Different implementations of the MUSIC estimator for
unknown model orders were tested on a violin signal with an
SNR of 10 dB. The spectrogram of the violin signal is shown
in top plot of Fig. 2. The middle plot shows the estimates
of the fundamental frequency and the bottom plot shows the
normalized minimum of the MUSIC cost function using an
EVD and the PASTd subspace tracker [8], respectively. In
the simulations a sample size of M = 110 at a sampling fre-



Obtaining signal subspace EVD FST
Imp. of cost function Old New Old New
Known model order 11.6 s 11.2 s 0.85 s 0.48 s

Unknown model order 38.9 s 34.7 s 11.9 s 7.1 s

Table 3: Simulation times on a 2.2 GHz Intel R© CoreTM2 Duo
laptop for the simulation with known and unknown model or-
ders, respectively. The table shows the simulation times for the
old and the new implementation of the cost function for the sig-
nal subspace where each of the implementations were tested with
an eigenvalue decomposition (EVD) and a fast subspace tracker
(FST), respectively.

quency of fs = 11025 Hz was chosen. The set of candidate
fundamental frequencies Ω was chosen to be in the interval
from 60 Hz to 1000 Hz, and the set of candidate model or-
ders L was in the interval from 4 to 8. The FFT-length was
4096 corresponding to a frequency resolution of 2.7 Hz. It
is seen that the use of the PASTd tracker resulted in a less
accurate estimate as compared to the use of an EVD. The
computation time, however, is again significantly reduced as
can be seen from Table 3. We notice again that the main
source of computational complexity was the use of an EVD
instead of the PASTd subspace tracker. The new implemen-
tation had only a significant impact on the simulation time
when the PASTd subspace tracker.

5. CONCLUSION

In this paper, we presented fast implementations of the MU-
SIC estimator for known and unknown model orders. We
showed how fast subspace tracker could be applied by refor-
mulating the MUSIC estimator. For known model order only
an arbitrary basis of the subspace must be known whereas
the subspace eigenvectors must be known for unknown model
orders. The fast subspace trackers should be chosen accord-
ingly. We also proposed a new way to calculate the MUSIC
cost function by use of only one FFT for known model or-
ders and by use of L FFTs for unknown model orders. The
simulations showed that these improvements could lower the
computation time significantly, especially when fast subspace
trackers were applied. The precision of the frequency esti-
mate, however, was reduced due to approximations intro-
duced by the subspace trackers. The new implementation of
the cost function entailed no approximations.
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