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ABSTRACT

We investigate waveform approximating residual coding for a sinu-

soidal parametric audio coder at low bit rates. The residual coding

is based on the well-known pre- and post-filtering method with loss-

less coding [1] which features perceptual weighting for short time

segments. We compare the incurred perceptual distortion from joint

quantization of the residual and the sinusoids for different bit rates.

In addition to that, we develop a transform coding scheme for the

coefficients in the pre- and post-filters which must be send as side

information between the encoder and decoder. Our investigations

show that the combination of the sinusoidal subcoder and the pre-

and post-filtering entails an overall lower perceptual distortion for

low as well as high bit rates. Also, the developed transform coding

scheme enables efficient coding of the side information at a low bit

rate.

Index Terms— Perceptual audio coding, residual coding, pre-

and post-filtering, sinusoidal audio coding

1. INTRODUCTION

The reduction of the bit rate for a given fidelity in audio coders has

been subject to extensive research in the past few decades. This

has led to a variety of audio coders of which MPEG-1 layer 3

(MP3) and MPEG-2/4 Advanced Audio Coding (AAC) are the most

widespread. These audio coders can typically achieve CD-quality at

bit rates of 96 kbit/s and 64 kbit/s for a mono signal [1], respectively,

whereas the standard pulse code modulation (PCM) entails a bit rate

of 705.1 kbit/s for a mono signal with 16 bit/sample and a sample

rate of 44.1 kHz. The large compression factor is achieved by use

of perceptual audio coding which comprises irrelevance and redun-

dancy removal. Irrelevance removal is a lossy process in which

inaudible signal components are discarded. Inaudibility is deter-

mined by a masking curve derived from a psycho-acoustical model,

and it depends on the time, frequency and amplitude characteristics

of the audio signal [2]. Redundancy removal is a lossless process

that removes statistical dependencies within the signal.

Traditional audio coders use subband coding and/or transform

coding (see e.g. [3, 4]) in which an audio signal in the encoder is
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transformed into a perceptual domain where quantization according

to a derived masking curve is succeeded by lossless coding. In the

decoder, the inverse transform is applied and this produces the re-

constructed audio signal. For very low bit rates, however, subband

coding and transform coding are not optimal for some audio signals

for which reason parametric audio coding has been used as an alter-

native in the recent years [5]. In parametric audio coding a model of

the audio signal is assumed, and the encoding process thus reduces to

an estimation of the parameters in the assumed model. A very popu-

lar parametric model is the sinusoidal model which recently has been

standardized as MPEG-4 HILN (harmonics and individual lines plus

noise) [6]. HILN consists like most other parametric coders of a si-

nusoidal subcoder and a residual or noise subcoder where the latter

codes the remaining audio signal which is not extracted by the sinu-

soidal subcoder. Residual subcoders are typically divided into non-

waveform and waveforms approximating coders. The non-waveform

approximating subcoders are often based on stochastic modelling of

the residual and perform well at low bit rates. The audio quality,

however, does not in general increase with increasing bit rate which

is in contrast to the waveform approximating coders whose main

drawback is poor performance at low bit rates.

In this paper, we investigate a waveform approximating resid-

ual subcoder for low bit rates in combination with a simple sinu-

soidal subcoder. The residual subcoder is based on the pre- and

post-filtering method [1, 7] which features perceptual weighting for

very short time segments and de-correlation with the weighted cas-

cade least-mean-square (WCLMS) prediction. In the pre- and post-

filtering method, a pre-filter adapts its frequency response to the in-

verse of the masking curve thus mapping the audio signal to a per-

ceptual domain in which irrelevance reduction can be performed in

a straight-forward manner. The inverse filtering is performed by the

post-filter whose frequency response equals the masking curve. The

adaption of the pre- and post-filter to the masking curve requires

side information to be send from the encoder to the decoder. In this

paper, an efficient encoding scheme is also proposed based on trans-

form coding with the fixed Karhunen-Loeve Transform (KLT).

The paper is organized as follows. In Section 2, we briefly

present the pre- and post-filtering method, sinusoidal audio coding

and 2-dimensional transform coding. Based on this, our implemen-

tation of the sinusoidal subcoder and the pre- and post-filtered resid-

ual subcoder is given in Section 3 along with a description of the

implementation of the transform coding of the masking curves. In

Section 4, the results are presented while Section 5 concludes the

paper.



Delay

Psycho-

acoustic 

model

Gain

LPC

LSF

Pre-filter Q

Irrelevance reduction

Lossless 

encoder

+

-

Lossless encoder Lossless decoder

Q-1

x

Encoder Decoder

Sinusoidal 

coder

Lossless 

decoder

Q

+

+

Q-1

Q

x̂

Q-1 Q-1

Post-

filter

Fig. 1. Block diagram of the sinusoidal subcoder integrated in the pre- and post-filtering setup where theWCLMS predictor acts as a waveform

approximating residual subcoder. The shaded backgrounds indicates our modification of the original pre- and post-filtering setup.

2. FUNDAMENTALS

2.1. Pre- and Post-Filtering

The overall pre- and post-filtering system consists of an encoder and

a decoder as depicted in Fig. 1. In the encoder, irrelevance and

redundancy removal is separated into two different parts. The ir-

relevance removal is performed by adaptive psycho-acoustical con-

trolled pre- and post-filters, whose frequency responses are deter-

mined by the masking curve, and a uniform quantizer. The redun-

dancy removal is performed by a lossless encoder based on weighted

cascade least-mean-square (WCLMS) prediction. The decoder con-

sists of a lossless decoder, an inverse quantizer and the post-filter

whose frequency response is the inverse of the pre-filter and, hence,

equals the masking curve. The masking curve, obtained from the

psycho-acoustic model, is parametrized using warped linear predic-

tive coding (WLPC) [8] and the resulting WLPC coefficients and

prediction error standard deviation are used in the frequency warped

pre- and post-filters as filter coefficients and gain factor, respectively.

The masking curves, and thus the WLPC coefficients, are updated

every 2 ms to 4 ms. Since a direct switch between old and new fil-

ter coefficients leads to audible artifacts [1, 7], interpolation between

the coefficients is necessary. However, the interpolation requirement

introduces stability issues in the post-filter since WLPC coefficients

are not suitable for interpolation. Therefore, the WLPC coefficients

are converted into e.g. the line spectral frequency (LSF) coefficient

representation [9] or the reflection coefficient (PARCOR) represen-

tation [10] which are both amenable to interpolation. The operation

of the post-filter requires the frequency response of the pre-filter to

be coded and send as side information between the encoder and de-

coder. In [7] this is done by use of vector quantization of the LSF

coefficients which results in bit rates from 7 kbit/s to 10 kbits/s.

2.2. Sinusoidal Audio Coding

In this paper, we consider the following sinusoidal model of order L

for a time frame n = 0, 1, · · · , N − 1 of an audio signal x[n]

x[n] =
L

X

l=1

Al cos(ωln + φl) + e[n] (1)

where Al, ωl and φl are the amplitude, frequency and phase of the

l’th sinusoid, respectively. The difference e[n] between the signal

extracted by this model and the actual audio signal is termed the

residual. For each time frame, which might overlap the previous, the

parameters of Eq. (1) are estimated by use of some suitable estima-

tor as for example the perceptual matching pursuit (PMP) [11] which

iteratively seeks to minimize a perceptual norm based on this resid-

ual. The sinusoidal model in Eq. (1) is effective for coding stationary

tonal signals, but it entails a lot of problems in coding non-stationary

and transient signals. For this reason, many extensions to the basic

sinusoidal model have been proposed which among others comprise

adaptive segmentation [12] and amplitude modulation [13]. In this

paper, however, we will use the simple model in Eq. (1). In order

to enable efficient transmission of the sinusoidal parameters between

encoder and decoder, the sinusoidal parameters have to be quantized.

There exists several approaches for this quantization ranging from

simple independent uniform quantizers [13] to more refined depen-

dent trellis-coded quantizers [14].

2.3. 2-D Transform Coding

The WLPC representation of the masking curve requires side infor-

mation to be send from the encoder and decoder. To lower the overall

bit rate, it is therefore desirable to reduce the amount of side infor-

mation as much as possible, and transform coding is widely used

for this compression task. In 2-dimensional transform coding, the

relationship between the original matrix X of size P × M and the

transform matrix Y of size P × M is

Y = T vXT
H
h and X = T

H
v Y T h (2)

where (·)H denotes the complex transpose, and T v and T h are sep-

arable orthonormal transform kernels of size P × P and M × M ,

respectively. The main motivation behind transform coding is that,

for a suitable pair of transform kernels, the quantization of the trans-

form coefficients in Y leads to a smaller overall distortion as com-

pared to direct quantization of X for the same bit rate. It can be

shown that the optimum linear transform is the Karhunen-Loeve

Transform (KLT) whose transform kernels are found from the eigen-

value decomposition in horizontal and vertical direction, denoted by

subscripts h and v, respectively, of X given by

Rv = T
H
v ΛvT v and Rh = T

H
h ΛhT h (3)

provided that the autocorrelation function of X is separable in hor-

izontal and vertical direction [4]. The main drawback of the KLT is

that it depends on the statistics of X . For this reason other subop-

timal, but fixed, transforms such as the discrete Cosine Transform

(DCT) and the discrete Fourier Transform (DFT) have been sug-

gested. Another advantage of these transforms is that they can be

implemented in an effective way using the FFT.

For quantization of the transform coefficients, entropy coded

scalar quantization is considered since it fits well in the sinusoidal



0 0.5 1 1.5 2 2.5 3
0

1.2

2.4

3.6
x 10

4

Fig. 2. Histograms with 100 bins for the LSF coefficients. The histograms are computed from the training database consisting of approxi-

mately 600,000 LSF vectors.

coder and pre- and post filtering setup. It can be shown analytically

that the uniform quantizer under high resolution approximations is

the optimal quantizer for entropy coded scalar quantization with an

average rate only 0.255 bits from the Shannon lower bound [3]. Em-

pirical studies have also shown that the uniform quantizer is nearly

optimal for low bit rates as well [3]. Under high resolution approx-

imations, the optimal step size ∆ of all the uniform quantizers are

equal and can be shown to be equal to

∆ = 2−R̄
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where R̄ is the desired average bit rate and h(yij) denotes the dif-

ferential entropy of the (i, j)’th transform coefficient. The differen-

tial entropies for different probability density functions (pdf) can be

found in e.g. [4].

3. IMPLEMENTATION

The coding system considered in this paper is based on the simple

sinusoidal subcoder implementing the signal model in Eq. (1) and

the pre- and post-filter setup acting as a waveform approximating

residual subcoder. The pre- and post-filters were implemented using

a warped lattice structure specified by PARCOR coefficients, a gain

factor and a warping coefficient. To avoid audible artifacts in the

coded signals due to rapidly changing filter coefficients, linear inter-

polation was applied on the PARCOR coefficients and the gain factor

for each input sample as in [7]. Fig. 1 depicts the block diagram of

the considered coder. The sinusoidal subcoder is placed between the

pre- and post-filter in order to utilize the high time resolution of the

perceptual weighting in the pre- and post-filtering setup. This also

saves the separate perceptual weighting in the sinusoidal subcoder

thus reducing the computational complexity of the sinusoidal sub-

coder from that of perceptual matching pursuit to that of matching

pursuit. The cost of this choice is the sub-optimality introduced by

the WLPC representation of the frequency response of the pre- and

post-filters. With this setup, the residual subcoder is thus constituted

by the uniform quantizer and the WCLMS-based lossless coder.

Efficient coding of the LSF coefficients is widely studied in the

field of speech coding, but has not been treated in great detail for

coding of the masking curve. The studies in speech coding comprise

among others the statistical properties of the LSF coefficients [15],

vector predictive quantization [16] and transform coding [17] of the

LSF coefficients. They show that LSF coefficients are highly corre-

lated in the same frame and between frames and that the distributions

of the LSF coefficient resemble skewed Gaussian and Laplace distri-

butions. In our studies, the LSF coefficients describe the prewarped

masking curve, but they seem to have the same statistical properties

as the LSF coefficients in speech coding. The histograms for the LSF

coefficients, each using 100 bins, are shown in Fig. 2. These results

were found from an analysis of a music training database consisting

of eight different songs of a total length of approximately 40 min-

utes. An LSF column vector of dimension P = 12 was computed

for every music frame of 4 ms which led to a training database of

approximately 600,000 LSF vectors.

In our coding scheme, transform coding is used to code the LSF

coefficients as opposed to vector quantization in [7]. The motivation

behind this choice is that transform coding enables the use of sim-

ple scalar quantizers. We use and compare the performance of fixed

KLT, DCT and PCM where fixed KLT refers to that the transform

kernels are found from the training database and fixed during cod-

ing. The PCM uses simply the identity matrix as transform kernels.

For quantization the entropy coded scalar quantizers are used, and

the step size ∆ is found from Eq. (4) with the Gaussian distribution

as the model for the transform coefficients since it was found to have

the greatest resemblance with the estimated distribution of the trans-

form coefficients shown in Fig. 2. The variances of the transform

coefficients were found from the training database. Another music

database consisting of approximately 84,000 LSF vectors was used

for testing.

4. EXPERIMENTAL RESULTS

The following section describes the results obtained from the mea-

surements of the sinusoidal subcoder combined with the WCLMS

based residual subcoder. Also, the evaluation of the transform cod-

ing of the LSF coefficients is described.

4.1. Sinusoidal Coding with Residual Coding based on Pre- and

Post-filtering

The evaluation of the sinusoidal subcoder in combination with the

WCLMS based residual coder was performed by means of rate-

distortion measurements at different bit rates. In these measure-

ments, the PARCOR coefficients as well as the gain factor were

found from WLPC of the masking curve derived from 4 ms non-

overlapping time segments of the input signal using the psycho-

acoustical model in [18]. The WLPC coefficients were transformed

to the LSF representation and quantized using transform coding as

described in Section 4.2. For the sinusoidal coding, 32 ms 50 %

overlapping von Hann windowed time segments were used, and 4

ms time segments for the pre- and post-filtering. Further, the phases

of the sinusoids were quantized uniformly using 5 bits while the am-

plitudes and frequencies were quantized in the logarithmic domain

using step sizes of 0.161 and 0.003, respectively, as in [13]. The

step size of the uniform quantizer and the number of sinusoids in

the sinusoidal subcoder were the only parameters that were varied

in the measurements, and a (R, D)-pair was calculated from a (step

size, number of sinusoids)-pair. The distortion was measured as the

mean-square-error (MSE) in the perceptual domain, i.e. the MSE
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Fig. 3. Measured average rate-distortion for different (step size,

number of sinusoids)-pairs for a music piece by Clapton.
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Fig. 4. Optimal number of sinusoids (solid) and optimal step size

(dashed) associated with a music piece by Clapton.

between the output signal of the pre-filter and the input signal of the

post-filter. The rate was measured as the sum of the estimated out-

put entropy of theWCLMS-based lossless encoder and the estimated

entropy of the quantized frequencies, phases and amplitudes of the

sinusoids. Thus, the rate did not include the quantized LSF coeffi-

cients and gain factor. This contribution is found in Section 4.2 and

must be added as well in order to obtain the total rate.

The R-D measurements were performed on two different music

pieces: One with a stochastic and transient behaviour without vocal

(10 seconds from intro of live recording of Layla by Eric Clapton

- Fig. 3 and Fig. 4) and one with a mixture of music and vocal (10

seconds from Head over Heels by Abba - Fig. 5). Fig. 3 and Fig. 5

showed the same trend. For low bit rates, the perceptual MSE was

minimized if most of the bits were allocated to the sinusoidal sub-

coder whereas for high bit rates, the perceptual MSE was minimized

if all of the bits were allocated the uniform quantizer in the residual

subcoder. The transition region was quite small and occured at a rate

of approximately 50 kbit/s. Fig. 4 shows the optimal number of sinu-

soids and optimal step size associated with Fig. 3. It shows that the

number of sinusoids was increasing linearly until some point over

which the number of sinusoids was decreased to zero almost im-

mediately. At the same point the quantizer step size was decreased

dramatically.
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Fig. 6. Measured average rate-distortion pairs for each transform

coefficient of the fixed KLT, the DCT and PCM. The measurements

were performed on a test database of approximately 84,000 LSF vec-

tors.

4.2. Transform Coding of Masking Curves

The evaluation of the transform coding scheme of the masking

curves was performed by use of two tests based on the LSF vec-

tors in the test database: 1) Rate-distortion measurements (R-D)

for the fixed KLT, the DCT and PCM and 2) log spectral distor-

tion measurements for the fixed KLT, the DCT and PCM. Fig. 6

depicts the measured R-D points for the fixed KLT, the DCT and

PCM operating on a block of M = 10 consecutive LSF column

vectors of size P = 12. The distortion was measured as the mean

squared error (MSE) between the unquantized and quantized trans-

form coefficient, and the average rate was estimated as the average

of the entropy of each transform coefficient. Fig. 6 shows that the

fixed KLT was slightly better than the DCT while PCM performed

much worse than both the fixed KLT and the DCT. Since the DCT

enables the use of a fast implementation by means of the FFT, the

DCT may therefore be the best choice for many application in which

computational complexity matters.

Since the MSE distortion measure does not in general corre-

spond to subjective measures, the system performance was also eval-

uated using the log spectral distortion (LSD) measure which is often

used for evaluation of speech coders [17]. The LSD measures the

average mean square logarithmic distance between the original and
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tors in the test database for different measured average bit rates.

reconstructed power spectral density (PSD) and is defined as [19]

DLS =

v

u

u

t

1

2π

Z π

−π

"

10 log10

S(ω)

Ŝ(ω)

#2

dω (5)

where S(ω) and Ŝ(ω) are the original and reconstructed PSD, re-

spectively, which in our setup correspond to the original and recon-

structed masking curve. The LSDwas computed for each LSF vector

in our test database and the sample mean and sample variance for the

fixed KLT, the DCT and PCM for different bit rates were calculated.

Fig. 7 shows a plot of the measured values. Clearly, the mean value

and variance of the fixed KLT and the DCT were significantly lower

than that of PCMwhich resembled the observed pattern of the objec-

tive distortion measure in Fig. 6. That is, the fixed KLT was slightly

better than the DCT and much better than PCM. It is interesting to

note that an average LSD of 1 dB for the fixed KLT resulted in an

average bit rate of approximately 1.8 bits per transform coefficient.

With a frame length of 4 ms and P = 12 this amounts to a bit rate

of 5.4 kbit/s which is lower than 7 kbit/s to 10 kbit/s obtained in [7]

by use of vector quantization. In speech coding, an LSD of 1 dB is

typically considered as a limit of perceptual significance [17].

5. CONCLUSION

In this paper we have focused on two topics. First, we investigated

the combination of a simple sinusoidal subcoder and a waveform

approximating residual subcoder for low bit rates based on pre- and

post-filtering. The results showed that it was possible to use the si-

nusoidal subcoder with the chosen residual subcoder to reduce the

perceptual distortion at low bit rates, whereas, for higher bit rates,

the perceptual distortion was lowest using only a WCLMS based

subcoder, which is a part of the chosen residual subcoder system. In

order to keep the distortion as low as possible for all bit rates, the

two coding structures should be allocated bits jointly in and rate-

distortion optimal way. Second, it was investigated how the WLPC

coefficients for the pre- and post-filters could be coded in an efficient

way. It was shown that by applying transform coding using the fixed

KLT and by applying entropy coded scalar quantization of the trans-

form coefficients, the MSE as well as the LSD could be improved

compared to using the DCT and PCM. For a block length of 4 ms

and filter order of 12 an average LSD of 1 dB could be obtained at a

bit rate of 5.4 kbit/s.
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